Квадратура круга

Версия от 12:23, 22 июля 2024; Resuuser989 (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Квадратура круга — это классическая задача геометрии, которая заключается в следующем: используя только циркуль и линейку, построить квадрат, площадь которого равна площади заданного круга. Другими словами, задача заключается в том, чтобы найти способ преобразовать круг в квадрат, используя только эти два инструмента.

Иллюстрация из книги Лолора Роберта "Сакральная геометрия. Философия и практика": Указанная на рисунке средневековая квадратура круга, построенная с помощью пентакля (пятиконечной звезды), символизирует достижение гармонии между интуицией (обозначенной пентаклем) и разумом (обозначенным квадратом) или идею о том, что бесконечность (круг) информационно взаимодействует с человеческим интеллектом посредством законов гармонии.

Исторический контекст

Древнегреческие математики, такие как Анаксагор и Гиппократ Хиосский, пытались решить задачу о квадратуре круга. Они стремились построить квадрат, площадь которого равна площади данного круга, используя только циркуль и линейку. Задача о квадратуре круга была одной из самых известных нерешенных проблем в математике на протяжении более 2000 лет. Многие великие математики пытались решить ее, но безуспешно.

В папирусе Ахмеса запечатлена первая попытка рассчитать число Пи по «квадратуре круга», которая заключалась в измерении диаметра круга по созданным внутри квадратам.

В 1882 году немецкий математик Фердинанд фон Линдеманн доказал, что построение квадратуры круга с помощью только циркуля и линейки невозможно. Это доказательство положило конец многовековым попыткам решить эту задачу.

Обоснование невозможности решения

Почему это невозможно? Задача построения квадратуры круга средствами линейки и циркуля невозможна, потому что отношение длины окружности круга к его диаметру (число π) является иррациональным числом. Это означает, что π нельзя представить в виде дроби двух целых чисел.

Для построения квадрата, площадь которого равна площади круга, необходимо уметь точно откладывать длину, равную длине окружности круга. Однако, поскольку число π иррационально, невозможно точно отложить длину, равную длине окружности круга, используя только циркуль и линейку.

Сакральная геометрия

Поскольку круг является несоизмеримой фигурой, основанной на π, можно нарисовать квадрат, только приближенно равный ему. Тем не менее, квадратура круга имеет большое значение для геометра-космолога, поскольку для него круг представляет собой чистое, не-проявленное дух-пространство, а квадрат является проявлением воспринимаемого мира. Когда между кругом и квадратом можно установить хотя бы приблизительное равенство, бесконечность может отобразить свои размеры или качества посредством конечного. [1]

Упоминание в Книге Закона

Стих 47 III главы от имени Ра-Хор-Хута содержит упоминание квадратуры круга:

47. This book shall be translated into all tongues: but always with the original in the writing of the Beast; for in the chance shape of the letters and their position to one another: in these are mysteries that no Beast shall divine. Let him not seek to try: but one cometh after him, whence I say not, who shall discover the Key of it all. Then this line drawn is a key: then this circle squared in its failure is a key also. And Abrahadabra. It shall be his child & that strangely. Let him not seek after this; for thereby alone can he fall from it.

Тогда и эта прочерченная линия — ключ; тогда и этот круг, в невозможности его квадратуры, также ключ.


Ссылки

1. Сакральная геометрия. Философия и практика. Лолор Роберт
Символизм
Мифологические существа
Человек
Цвета
Числа
12345678910111213151721222628303132333640444548495055566064707172737893106108120156210220418666671
Прочие символы